

Random Forests

11-21-2024

Nick Nunley

Outline

Shannon Entropy

Decision trees

Random forests

Shannon Entropy

Mathematical definition

$$H(X) = -\sum_{i} P(X)_{i} log_{2}(P(X)_{i})$$

Mathematical definition

$$H(X) = -\sum_{i} P(X)_{i} log_{2}(P(X)_{i})$$
Probability of outcome Information content of outcome

Shannon Entropy example

Shannon Entropy example

Decision trees

Decision tree definition

 A supervised learning approach represented with a flowchartlike tree data structure used to make decisions or predictions

 Internal nodes represent conditionals for evaluating/predicting the target outcome and leaf nodes represent the target outcome

Decision tree example for predicting protein-protein interactions

а	Gene Pair	Interact?	Expression correlation	Shared localization?	Shared function?	Genomic distance
	A-B	Yes	0.77	Yes	No	1 kb
	A-C	Yes	0.91	Yes	Yes	10 kb
	C-D	No	0.1	No	No	1 Mb
	•					

Decision tree example for predicting protein-protein interactions

Expression

correlation

0.77

How are these conditions determined and in what order to evaluate these conditions?

Shared

localization?

Yes

Shared

function?

No

Genomic

distance

1 kb

a

Gene

Pair

A-B

Interact?

Yes

Decision tree example for predicting protein-protein interactions

How are these conditions determined and in what order to evaluate these conditions?

Common approach, though not necessary, is to use Shannon's entropy

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Information gain := IG(S,X) = H(S) - H(S|X)

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Information gain := IG(S,X) = H(S) - H(S|X)

Shannon Entropy before splitting data

Shannon Entropy conditioned on splitting data by feature *X*

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Information gain := IG(S,X) = H(S) - H(S|X)

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Information gain := IG(S,X) = H(S) - H(S|X)

 \rightarrow Split data such that is IG(S,X) maximized

Let *S* denote the entire dataset and *X* denote a feature considered to be split on

Information gain :=
$$IG(S,X) = H(S) - H(S|X)$$

 \rightarrow Split data such that is IG(S,X) maximized

Note: Gini is often used instead of Entropy

Decision tree tradeoffs

• Pros:

- ➤ Simple to implement, understand, and interpret
- ➤ Can handle both **numerical** and **categorical** data
- ➤ Can be used for both classification and regression
 - Note: for **regression**, we typically use **MSE** (or something similar) instead of **Shannon Entropy**
- ➤ Built in feature selection

Decision tree tradeoffs

• Pros:

- ➤ Simple to implement, understand, and interpret
- ➤ Can handle both **numerical** and **categorical** data
- ➤ Can be used for both classification and regression
 - Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy
- ➤ Built in feature selection

Cons:

- Constructing a tree is not guaranteed to be optimally fit due to greedy nature
- Decision tree structures are extremely sensitive to small changes in training data
- ➤ Very prone to overfitting

Decision tree tradeoffs

• Pros:

- ➤ Simple to implement, understand, and interpret
- ➤ Can handle both **numerical** and **categorical** data
- ➤ Can be used for both classification and regression
 - Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy
- ➤ Built in feature selection

Cons:

- Constructing a tree is not guaranteed to be optimally fit due to greedy nature
- Decision tree structures are extremely sensitive to small changes in training data
- ➤ Very prone to overfitting

→ Random forests

Random forests

Random forest (RF) definition

 An ensemble supervised learning approach that uses multiple decision trees trained on various subsets of the data obtained via bootstrapping

Random forest (RF) definition

 An ensemble supervised learning approach that uses multiple decision trees trained on various subsets of the data obtained via bootstrapping

- For **classification**, the final predicted value is *typically* the class selected by the most trees (majority voting)
- For regression, the final predicted value is typically the average value of what the trees predict

What makes random forests 'random'?

 Bootstrapping training data: each tree in the forest is trained on a random subset of the training data (with replacement), and then final predictions are an aggregation of the trees' predictions a process known as bagging

What makes random forests 'random'?

- Bootstrapping training data: each tree in the forest is trained on a random subset of the training data (with replacement), and then final predictions are an aggregation of the trees' predictions a process known as bagging
- Random feature selection: at each node in a tree, only a random subset of features is considered for splitting, introducing randomness in tree construction and reducing correlation between trees (feature bagging)

 Number of trees: determines the size of the forest and influences model stability

- Number of trees: determines the size of the forest and influences model stability
- Number of features sampled per split: adds randomness to tree construction for better generalization

- Number of trees: determines the size of the forest and influences model stability
- Number of features sampled per split: adds randomness to tree construction for better generalization
- Tree-specific parameters: depth, minimum samples per split, and other controls for tree complexity

- Number of trees: determines the size of the forest and influences model stability
- Number of features sampled per split: adds randomness to tree construction for better generalization
- Tree-specific parameters: depth, minimum samples per split, and other controls for tree complexity
- Bootstrapping settings: how to sample and subset sizes for data and features

- Number of trees: determines the size of the forest and influences model stability
- Number of features sampled per split: adds randomness to tree construction for better generalization
- Tree-specific parameters: depth, minimum samples per split, and other controls for tree complexity
- Bootstrapping settings: how to sample and subset sizes for data and features
- And more!

- Number of trees: determines the size of the forest and influences model stability
- Number of features sampled per split: adds randomness to tree construction for better generalization
- Tree-specific parameters: depth, minimum samples per split, and other controls for tree complexity
- Bootstrapping settings: how to sample and subset sizes for data and features
- And more!

→ Typically use approaches like **cross validation** or **out-of-bag (OOB)** error to perform tuning

RF implementation in R

```
# Example with Iris dataset
library(randomForest);
data(iris);
set.seed(123);
rf.model <- randomForest(</pre>
    Species ~ .,
    data = iris,
    importance = TRUE
    );
rf.model;
```

RF implementation in R

```
Call:
 randomForest(formula = Species ~ ., data = iris, importance =
TRUE)
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 2
        OOB estimate of error rate: 4.67%
Confusion matrix:
           setosa versicolor virginica class.error
                                               0.00
               50
setosa
                                               0.06
versicolor
                          47
                                               0.08
virginica
                                     46
```

RF implementation in R with ntree and mtry tuning using grid search

```
tune.rf <- function(data, formula, ntree.values, mtry.values, seed = 123) {</pre>
    results <- expand.grid(ntree = ntree.values, mtry = mtry.values);
   results$oob error <- NA;
   for (i in 1:nrow(results)) {
        set.seed(seed);
        rf.model <- randomForest(</pre>
            formula = formula,
            data = data,
            ntree = results$ntree[i],
            mtry = results$mtry[i],
            importance = TRUE
            );
        results$oob error[i] <- rf.model$err.rate[results$ntree[i], 'OOB'];</pre>
    return(results);
```

RF implementation in R with ntree and mtry tuning using grid search

```
# Tuning ntree and mtry hyperparameters
ntree.values \leftarrow seq(10, 500, by = 10);
mtry.values <- 1:4;
tuning.result <- tune.rf(
    data = iris,
    formula = Species ~ .,
    ntree.values = ntree.values,
    mtry.values = mtry.values
    );
optimal.params <- tuning.result[which.min(tuning.result$00b error), ];</pre>
# Fitting a tuned model
set.seed(123);
tuned.model <- randomForest(
    Species ~ .,
    data = iris.
    ntree = optimal.params$ntree,
    mtry = optimal.params$mtry,
    importance = TRUE
    );
tuned.model;
```

RF implementation in R with ntree and mtry tuning using grid search

```
Call:
Type of random forest: classification
                Number of trees: 20
No. of variables tried at each split: 2
      OOB estimate of error rate: 3.33%
Confusion matrix:
        setosa versicolor virginica class.error
setosa
           50
                                   0.00
versicolor
                 47
                                   0.06
                            48
virginica
                                   0.04
```

Questions?