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Outline

• Shannon Entropy

• Decision trees

• Random forests
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Shannon Entropy
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Mathematical definition
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𝑖 represents a possible outcome out of all possible 
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Shannon Entropy example

5https://www.researchgate.net/publication/261042470_Simulation_Results_of_Shannon_Entropy_based_Flexgrid_Routing_an
d_Spectrum_Assignment_on_a_Real_Network_Topology



Shannon Entropy example
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Decision trees
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Decision tree definition

• A supervised learning approach represented with a flowchart-
like tree data structure used to make decisions or predictions

• Internal nodes represent conditionals for evaluating/predicting 
the target outcome and leaf nodes represent the target 
outcome

8https://en.wikipedia.org/wiki/Decision_tree_learning



Decision tree example for predicting protein-protein 
interactions

9https://pmc.ncbi.nlm.nih.gov/articles/PMC2701298/



Decision tree example for predicting protein-protein 
interactions
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How are these 

conditions 

determined and in 

what order to 

evaluate these 
conditions?



Decision tree example for predicting protein-protein 
interactions
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How are these 

conditions 

determined and in 

what order to 

evaluate these 
conditions?

Common 

approach, though 

not necessary, is 

to use 

Shannon’s 
entropy



Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature 
considered to be split on

12https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8



Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature 
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)
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Decision tree split point determination
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Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature 
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

→ Split data such that is 𝐼𝐺(𝑆, 𝑋) maximized
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Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature 
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)
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Note: Gini is often used instead of Entropy



Decision tree tradeoffs

• Pros:
➢Simple to implement, understand, and interpret
➢Can handle both numerical and categorical data

➢Can be used for both classification and regression
▪ Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

➢Built in feature selection

• Cons:
➢Constructing a tree is not guaranteed to be optimally fit due to greedy 

nature
➢Decision tree structures are extremely sensitive to small changes in 

training data
➢Very prone to overfitting

18https://en.wikipedia.org/wiki/Decision_tree_learning
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→ Random forests



Random forests
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Random forest (RF) definition

• An ensemble supervised learning approach that uses multiple 
decision trees trained on various subsets of the data obtained 
via bootstrapping

22https://en.wikipedia.org/wiki/Random_forest



Random forest (RF) definition

• An ensemble supervised learning approach that uses multiple 
decision trees trained on various subsets of the data obtained 
via bootstrapping

• For classification, the final predicted value is typically the class 
selected by the most trees (majority voting)

• For regression, the final predicted value is typically the 
average value of what the trees predict

23https://en.wikipedia.org/wiki/Random_forest



What makes random forests ‘random’?

• Bootstrapping training data: each tree in the forest is trained 
on a random subset of the training data (with replacement), and 
then final predictions are an aggregation of the trees’ 
predictions a process known as bagging

• Random feature selection: at each node in a tree, only a 
random subset of features is considered for splitting, introducing 
randomness in tree construction and reducing correlation 
between trees (feature bagging)

24https://en.wikipedia.org/wiki/Random_forest
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Random forest hyperparameters

• Number of trees: determines the size of the forest and 
influences model stability

• Number of features sampled per split: adds randomness to tree 
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split, 
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data 
and features

• And more!

26https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
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Random forest hyperparameters

• Number of trees: determines the size of the forest and 
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→ Typically use approaches like cross validation or out-of-

bag (OOB) error to perform tuning



RF implementation in R

# Example with Iris dataset

library(randomForest);

data(iris);

set.seed(123);

rf.model <- randomForest(

    Species ~ .,

    data = iris,

    importance = TRUE

    );

rf.model;

32https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest



RF implementation in R

Call:

 randomForest(formula = Species ~ ., data = iris, importance = 
TRUE) 

               Type of random forest: classification

                     Number of trees: 500

No. of variables tried at each split: 2

        OOB estimate of  error rate: 4.67%

Confusion matrix:

           setosa versicolor virginica class.error

setosa         50          0         0        0.00

versicolor      0         47         3        0.06

virginica       0          4        46        0.08

33https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest



RF implementation in R with ntree and mtry tuning 
using grid search

tune.rf <- function(data, formula, ntree.values, mtry.values, seed = 123) {

    results <- expand.grid(ntree = ntree.values, mtry = mtry.values);

    results$oob_error <- NA;

    for (i in 1:nrow(results)) {

        set.seed(seed);

        rf.model <- randomForest(

            formula = formula, 

            data = data, 

            ntree = results$ntree[i], 

            mtry = results$mtry[i], 

            importance = TRUE

            );

        results$oob_error[i] <- rf.model$err.rate[results$ntree[i], 'OOB'];

        }

    return(results);

    }

34https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest



RF implementation in R with ntree and mtry tuning 
using grid search

# Tuning ntree and mtry hyperparameters

ntree.values <- seq(10, 500, by = 10);

mtry.values <- 1:4;

tuning.result <- tune.rf(

    data = iris,

    formula = Species ~ .,

    ntree.values = ntree.values,

    mtry.values = mtry.values

    );

optimal.params <- tuning.result[which.min(tuning.result$oob_error), ];

# Fitting a tuned model

set.seed(123);

tuned.model <- randomForest(

    Species ~ .,

    data = iris,

    ntree = optimal.params$ntree,

    mtry = optimal.params$mtry,

    importance = TRUE

    );

tuned.model;

35https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest



RF implementation in R with ntree and mtry tuning 
using grid search

Call:

 randomForest(formula = Species ~ ., data = iris, ntree = 
optimal.params$ntree,      mtry = optimal.params$mtry, importance = TRUE) 

               Type of random forest: classification

                     Number of trees: 20

No. of variables tried at each split: 2

        OOB estimate of  error rate: 3.33%

Confusion matrix:

           setosa versicolor virginica class.error

setosa         50          0         0        0.00

versicolor      0         47         3        0.06

virginica       0          2        48        0.04

36https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest



Questions?
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