
Random Forests

11-21-2024

Nick Nunley

Outline

• Shannon Entropy

• Decision trees

• Random forests

1

Shannon Entropy

2

Mathematical definition

3

𝐻(𝑋) = − ෍

𝑖

𝑃(𝑋)𝑖𝑙𝑜𝑔2(𝑃(𝑋)𝑖)

𝑖 represents a possible outcome out of all possible

outcomes for a random process

𝐻(𝑋) = − ෍

𝑖

𝑃(𝑋)𝑖𝑙𝑜𝑔2(𝑃(𝑋)𝑖)

Mathematical definition

4

𝑖 represents a possible outcome out of all possible

outcomes for a random process

Probability of

outcome

Information

content of

outcome

Shannon Entropy example

5https://www.researchgate.net/publication/261042470_Simulation_Results_of_Shannon_Entropy_based_Flexgrid_Routing_an
d_Spectrum_Assignment_on_a_Real_Network_Topology

Shannon Entropy example

6

In
fo

rm
a
ti

o
n

 d
is

o
rd

e
r

https://www.researchgate.net/publication/261042470_Simulation_Results_of_Shannon_Entropy_based_Flexgrid_Routing_an
d_Spectrum_Assignment_on_a_Real_Network_Topology

Decision trees

7

Decision tree definition

• A supervised learning approach represented with a flowchart-
like tree data structure used to make decisions or predictions

• Internal nodes represent conditionals for evaluating/predicting
the target outcome and leaf nodes represent the target
outcome

8https://en.wikipedia.org/wiki/Decision_tree_learning

Decision tree example for predicting protein-protein
interactions

9https://pmc.ncbi.nlm.nih.gov/articles/PMC2701298/

Decision tree example for predicting protein-protein
interactions

10https://pmc.ncbi.nlm.nih.gov/articles/PMC2701298/

How are these

conditions

determined and in

what order to

evaluate these
conditions?

Decision tree example for predicting protein-protein
interactions

11https://pmc.ncbi.nlm.nih.gov/articles/PMC2701298/

How are these

conditions

determined and in

what order to

evaluate these
conditions?

Common

approach, though

not necessary, is

to use

Shannon’s
entropy

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

12https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

13https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

14https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Shannon Entropy

conditioned on

splitting data by

feature 𝑋

Shannon Entropy

before splitting data

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

15https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

→ Split data such that is 𝐼𝐺(𝑆, 𝑋) maximized

16https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Decision tree split point determination

Let 𝑆 denote the entire dataset and 𝑋 denote a feature
considered to be split on

Information gain ≔ 𝐼𝐺 𝑆, 𝑋 = 𝐻 𝑆 − 𝐻(𝑆|𝑋)

→ Split data such that is 𝐼𝐺(𝑆, 𝑋) maximized

17https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Note: Gini is often used instead of Entropy

Decision tree tradeoffs

• Pros:
➢Simple to implement, understand, and interpret
➢Can handle both numerical and categorical data

➢Can be used for both classification and regression
▪ Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

➢Built in feature selection

• Cons:
➢Constructing a tree is not guaranteed to be optimally fit due to greedy

nature
➢Decision tree structures are extremely sensitive to small changes in

training data
➢Very prone to overfitting

18https://en.wikipedia.org/wiki/Decision_tree_learning

Decision tree tradeoffs

• Pros:
➢Simple to implement, understand, and interpret
➢Can handle both numerical and categorical data

➢Can be used for both classification and regression
▪ Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

➢Built in feature selection

• Cons:
➢Constructing a tree is not guaranteed to be optimally fit due to greedy

nature
➢Decision tree structures are extremely sensitive to small changes in

training data
➢Very prone to overfitting

19https://en.wikipedia.org/wiki/Decision_tree_learning

Decision tree tradeoffs

• Pros:
➢Simple to implement, understand, and interpret
➢Can handle both numerical and categorical data

➢Can be used for both classification and regression
▪ Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

➢Built in feature selection

• Cons:
➢Constructing a tree is not guaranteed to be optimally fit due to greedy

nature
➢Decision tree structures are extremely sensitive to small changes in

training data
➢Very prone to overfitting

20https://en.wikipedia.org/wiki/Decision_tree_learning

→ Random forests

Random forests

21

Random forest (RF) definition

• An ensemble supervised learning approach that uses multiple
decision trees trained on various subsets of the data obtained
via bootstrapping

22https://en.wikipedia.org/wiki/Random_forest

Random forest (RF) definition

• An ensemble supervised learning approach that uses multiple
decision trees trained on various subsets of the data obtained
via bootstrapping

• For classification, the final predicted value is typically the class
selected by the most trees (majority voting)

• For regression, the final predicted value is typically the
average value of what the trees predict

23https://en.wikipedia.org/wiki/Random_forest

What makes random forests ‘random’?

• Bootstrapping training data: each tree in the forest is trained
on a random subset of the training data (with replacement), and
then final predictions are an aggregation of the trees’
predictions a process known as bagging

• Random feature selection: at each node in a tree, only a
random subset of features is considered for splitting, introducing
randomness in tree construction and reducing correlation
between trees (feature bagging)

24https://en.wikipedia.org/wiki/Random_forest

What makes random forests ‘random’?

• Bootstrapping training data: each tree in the forest is trained
on a random subset of the training data (with replacement), and
then final predictions are an aggregation of the trees’
predictions a process known as bagging

• Random feature selection: at each node in a tree, only a
random subset of features is considered for splitting, introducing
randomness in tree construction and reducing correlation
between trees (feature bagging)

25https://en.wikipedia.org/wiki/Random_forest

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

26https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

27https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

28https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

29https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

30https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

Random forest hyperparameters

• Number of trees: determines the size of the forest and
influences model stability

• Number of features sampled per split: adds randomness to tree
construction for better generalization

• Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

• Bootstrapping settings: how to sample and subset sizes for data
and features

• And more!

31https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

→ Typically use approaches like cross validation or out-of-

bag (OOB) error to perform tuning

RF implementation in R

Example with Iris dataset

library(randomForest);

data(iris);

set.seed(123);

rf.model <- randomForest(

 Species ~ .,

 data = iris,

 importance = TRUE

);

rf.model;

32https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest

RF implementation in R

Call:

 randomForest(formula = Species ~ ., data = iris, importance =
TRUE)

 Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 2

 OOB estimate of error rate: 4.67%

Confusion matrix:

 setosa versicolor virginica class.error

setosa 50 0 0 0.00

versicolor 0 47 3 0.06

virginica 0 4 46 0.08

33https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest

RF implementation in R with ntree and mtry tuning
using grid search

tune.rf <- function(data, formula, ntree.values, mtry.values, seed = 123) {

 results <- expand.grid(ntree = ntree.values, mtry = mtry.values);

 results$oob_error <- NA;

 for (i in 1:nrow(results)) {

 set.seed(seed);

 rf.model <- randomForest(

 formula = formula,

 data = data,

 ntree = results$ntree[i],

 mtry = results$mtry[i],

 importance = TRUE

);

 results$oob_error[i] <- rf.model$err.rate[results$ntree[i], 'OOB'];

 }

 return(results);

 }

34https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest

RF implementation in R with ntree and mtry tuning
using grid search

Tuning ntree and mtry hyperparameters

ntree.values <- seq(10, 500, by = 10);

mtry.values <- 1:4;

tuning.result <- tune.rf(

 data = iris,

 formula = Species ~ .,

 ntree.values = ntree.values,

 mtry.values = mtry.values

);

optimal.params <- tuning.result[which.min(tuning.result$oob_error),];

Fitting a tuned model

set.seed(123);

tuned.model <- randomForest(

 Species ~ .,

 data = iris,

 ntree = optimal.params$ntree,

 mtry = optimal.params$mtry,

 importance = TRUE

);

tuned.model;

35https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest

RF implementation in R with ntree and mtry tuning
using grid search

Call:

 randomForest(formula = Species ~ ., data = iris, ntree =
optimal.params$ntree, mtry = optimal.params$mtry, importance = TRUE)

 Type of random forest: classification

 Number of trees: 20

No. of variables tried at each split: 2

 OOB estimate of error rate: 3.33%

Confusion matrix:

 setosa versicolor virginica class.error

setosa 50 0 0 0.00

versicolor 0 47 3 0.06

virginica 0 2 48 0.04

36https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2/topics/randomForest

Questions?

37

	Slide 0: Random Forests
	Slide 1: Outline
	Slide 2: Shannon Entropy
	Slide 3: Mathematical definition
	Slide 4: Mathematical definition
	Slide 5: Shannon Entropy example
	Slide 6: Shannon Entropy example
	Slide 7: Decision trees
	Slide 8: Decision tree definition
	Slide 9: Decision tree example for predicting protein-protein interactions
	Slide 10: Decision tree example for predicting protein-protein interactions
	Slide 11: Decision tree example for predicting protein-protein interactions
	Slide 12: Decision tree split point determination
	Slide 13: Decision tree split point determination
	Slide 14: Decision tree split point determination
	Slide 15: Decision tree split point determination
	Slide 16: Decision tree split point determination
	Slide 17: Decision tree split point determination
	Slide 18: Decision tree tradeoffs
	Slide 19: Decision tree tradeoffs
	Slide 20: Decision tree tradeoffs
	Slide 21: Random forests
	Slide 22: Random forest (RF) definition
	Slide 23: Random forest (RF) definition
	Slide 24: What makes random forests ‘random’?
	Slide 25: What makes random forests ‘random’?
	Slide 26: Random forest hyperparameters
	Slide 27: Random forest hyperparameters
	Slide 28: Random forest hyperparameters
	Slide 29: Random forest hyperparameters
	Slide 30: Random forest hyperparameters
	Slide 31: Random forest hyperparameters
	Slide 32: RF implementation in R
	Slide 33: RF implementation in R
	Slide 34: RF implementation in R with ntree and mtry tuning using grid search
	Slide 35: RF implementation in R with ntree and mtry tuning using grid search
	Slide 36: RF implementation in R with ntree and mtry tuning using grid search
	Slide 37: Questions?

