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Mathematical definition
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Shannon Entropy example

Hrag = —5gWn(3g) = 0
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Shannon Entropy example
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Decision tree definition

» A supervised learning approach represented with a flowchart-
like tree data structure used to make decisions or predictions

* Internal nodes represent conditionals for evaluating/predicting
the target outcome and leaf nodes represent the target
outcome

UCLA Health ézr;iseorré(égtnéfrehensive https://en.wikipedia.org/wiki/Decision_tree_learning



Decision tree example for predicting protein-protein
interactions

a Gene Expression Shared Shared Genomic
Pair Interact? correlation localization? function? distance
A-B Yes 0.77 Yes No 1 kb
A-C Yes 0.91 Yes Yes 10 kb
C-D No 0.1 No No 1 Mb
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7 N
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o a
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¥
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Decision tree example for predicting protein-protein
interactions

a Gene Expression Shared Shared Genomic
Pair Interact? correlation localization? function? distance
A-B Yes 0.77 Yes No 1 kb
A-C Yes 0.91 Yes Yes 10 kb
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Decision tree example for predicting protein-protein
interactions

a Gene Expression Shared Shared Genomic
Pair Interact? correlation localization? function? distance
A-B Yes 0.77 Yes No 1 kb
A-C Yes 0.91 Yes Yes 10 kb
C-D No 0.1 No No 1 Mb
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on

Information gain := IG(S,X) = H(S) — H(S|X)

UCLA Health égﬁii?%gg:gfreh eeeeee https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on

Information gain := IG(S,X) = H(S) — H(S|X)

\ )

Shannon Entropy Shannon Entropy
before splitting data conditioned on
splitting data by
feature X
Jonsson Comprehensive | ¢ //towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18¢c8
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on

Information gain := IG(S,X) = H(S) — H(S|X)
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on

Information gain := IG(S,X) = H(S) — H(S|X)

- Split data such that is IG (S, X) maximized

UCLA Hea]_th éc;aizc:ré(e:gﬁfrehensive https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
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Decision tree split point determination

Let S denote the entire dataset and X denote a feature
considered to be split on

Information gain := IG(S,X) = H(S) — H(S|X)

- Split data such that is IG (S, X) maximized

Note: Gini is often used instead of Entropy

UCLA Hea]_th éc;zizc:ré(e:g:?a?rehensive https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
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Decision tree tradeoffs

* Pros:

»Simple to implement, understand, and interpret
»Can handle both numerical and categorical data
»Can be used for both classification and regression

= Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

> Built in feature selection

Jonsson Comprehensive

Cancer Center https://en.wikipedia.org/wiki/Decision_tree_learning
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Decision tree tradeoffs

* Pros:
»Simple to implement, understand, and interpret
»Can handle both numerical and categorical data
»Can be used for both classification and regression

= Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

> Built in feature selection

e Cons:

» Constructing a tree is not guaranteed to be optimally fit due to greedy
nature

»Decision tree structures are extremely sensitive to small changes in
training data

»\Very prone to overfitting
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Decision tree tradeoffs

* Pros:
»Simple to implement, understand, and interpret
»Can handle both numerical and categorical data
»Can be used for both classification and regression

= Note: for regression, we typically use MSE (or something similar) instead of Shannon Entropy

> Built in feature selection

e Cons:

» Constructing a tree is not guaranteed to be optimally fit due to greedy
nature

»Decision tree structures are extremely sensitive to small changes in
training data

»Very prone to overfitting - Random forests

Jonsson Comprehensive
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Random forests
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Random forest (RF) definition

 An ensemble supervised learning approach that uses multiple
decision trees trained on various subsets of the data obtained
via bootstrapping

UCLA Health éc;aizc:ré(e:gﬁfrehensive https://en.wikipedia.org/wiki/Random_forest
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Random forest (RF) definition

 An ensemble supervised learning approach that uses multiple
decision trees trained on various subsets of the data obtained

via bootstrapping

 For classification, the final predicted value is typically the class
selected by the most trees (majority voting)

* For regression, the final predicted value is typically the
average value of what the trees predict

UCLA Hea]_th ézr;iseorré(éztngfrehensive https://en.wikipedia.org/wiki/Random_forest 23



What makes random forests ‘random’?

« Bootstrapping training data: each tree in the forest is trained
on a random subset of the training data (with replacement), and
then final predictions are an aggregation of the trees’
predictions a process known as bagging

UCLA Health ézaisec:ré(ég:;?rehensive https://en.wikipedia.org/wiki/Random_forest
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What makes random forests ‘random’?

« Bootstrapping training data: each tree in the forest is trained
on a random subset of the training data (with replacement), and
then final predictions are an aggregation of the trees’
predictions a process known as bagging

« Random feature selection: at each node in a tree, only a
random subset of features is considered for splitting, introducing
randomness in tree construction and reducing correlation
between trees (feature bagging)

UCLA Hea]_th ézr;iseorré(éztngfrehensive https://en.wikipedia.org/wiki/Random_forest 25



Random forest hyperparameters

* Number of trees: determines the size of the forest and
influences model stability
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Random forest hyperparameters

* Number of trees: determines the size of the forest and
influences model stability

 Number of features sampled per split: adds randomness to tree
construction for better generalization
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Random forest hyperparameters

* Number of trees: determines the size of the forest and
iInfluences model stability

 Number of features sampled per split: adds randomness to tree
construction for better generalization

* Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

Jonsson Comprehensive https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
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Random forest hyperparameters

* Number of trees: determines the size of the forest and
iInfluences model stability

 Number of features sampled per split: adds randomness to tree
construction for better generalization

* Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

» Bootstrapping settings: how to sample and subset sizes for data
and features

UCLA Health é‘::]iseorré:(e:gtrgfreh eeeeee https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
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Random forest hyperparameters

* Number of trees: determines the size of the forest and
iInfluences model stability

 Number of features sampled per split: adds randomness to tree
construction for better generalization

* Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

» Bootstrapping settings: how to sample and subset sizes for data
and features

* And more!

UCLA Health é‘::]iseorré:(e:gtrgfreh eeeeee https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
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Random forest hyperparameters

* Number of trees: determines the size of the forest and
iInfluences model stability

 Number of features sampled per split: adds randomness to tree
construction for better generalization

* Tree-specific parameters: depth, minimum samples per split,
and other controls for tree complexity

» Bootstrapping settings: how to sample and subset sizes for data
and features

* And more! —> Typically use approaches like cross validation or out-of-
bag (OOB) error to perform tuning
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RF implementation in R

# Example with Iris dataset

library(randomForest) ;

data(iris);

set.seed(123) ;

rf.model <- randomForest (

Species ~ .,
data = 1iris,
importance =

I

rf.model;

Jonsson Comprehensive
Cancer Center
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RF implementation in R

Call:

randomForest (formula = Species ~ ., data = 1ris, 1mportance

TRUE)
Type of random forest: classification

Number of trees: 500
No. of variables tried at each split: 2

o\

OOB estimate of error rate: 4.67%

Confusion matrix:
setosa versicolor virglinica class.error

setosa 50 0 0 0.00
versicolor 0 477 3 0.06
virginilca 0 4 46 0.08

Jonsson Comprehensive . . . i .
Cancer Center https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2 /topics/randomForest




RF implementation in R with ntree and mtry tuning
using grid search

tune.rf <- function (data, formula, ntree.values, mtry.values, seed = 123) {
results <- expand.grid(ntree = ntree.values, mtry = mtry.values);
results$oob error <- NA;
for (i in l:nrow(results)) {
set.seed (seed);
rf.model <- randomForest (
formula = formula,
data = data,
ntree = results$Sntree[i],
mtry = resultsSmtry[il],
importance = TRUE
) 7
results$oob error[i] <- rf.modelSerr.rate[resultsSntree[i], 'OOB'];
}

return (results) ;

}

UCLA Health Jonsson Comprehensive https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2 /topics/randomForest 34
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RF implementation in R with ntree and mtry tuning
using grid search

# Tuning ntree and mtry hyperparameters
ntree.values <- seq (10, 500, by = 10);
mtry.values <- 1:4;

tuning.result <- tune.rf(

data = iris,
formula = Species ~ .,
ntree.values = ntree.values,

mtry.values = mtry.values

)i
optimal.params <- tuning.result[which.min(tuning.result$oob _error), ];

# Fitting a tuned model
set.seed(123);
tuned.model <- randomForest (
Species ~ .,
data = iris,
ntree = optimal.params$ntree,
mtry = optimal.paramsSmtry,
importance = TRUE
)i

tuned.model;

Cancer Center
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RF implementation in R with ntree and mtry tuning
using grid search

Call:
randomForest (formula = Species ~ ., data = iris, ntree =
optimal.paramsSntree, mtry = optimal.paramsSmtry, importance = TRUE)

Type of random forest: classification

Number of trees: 20

No. of variables tried at each split: 2

o

o\

OOB estimate of error rate: 3.33

Confusion matrix:
setosa versicolor virginica class.error

setosa 50 0 0 0.00
versicolor 0 477 3 0.006
virginica 0 2 48 0.04

Jonsson Comprehensive . . . i .
Cancer Center https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.2 /topics/randomForest
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Questions?
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